
HiPART: A New Hierarchical Semi-Interactive HW-/SW Partitioning Approach
with Fast Debugging for Real-Time Embedded Systems

Thomas Hollstein, J¨urgen Becker, Andreas Kirschbaum, Manfred Glesner
Darmstadt University of Technology
Institute of Microelectronic Systems

Karlstr 15, 64291 Darmstadt
fthomasjbeckerjglesnerg@mes.tu-darmstadt.de

Abstract

In this contribution we present a new system-level hard-
ware/software partitioning approach (HiPART) which is
run in the frame of an integrated hardware software design
methodology for embedded system design. The benefits of
the approach result from an hierarchical partitioning algo-
rithm, consisting of three phases of constructive and itera-
tive methods. The main advantage of the system is a freely
selectable degree of user interaction and manual partition-
ing. A permanent observation of timing constraint viola-
tions during partitioning guarantees the applicability for
real-time systems.

1. Introduction

The scene of hardware/software codesign has introduced
a number of hardware/software partitioning approaches
to speed-up performance, to optimize hardware/software
trade-offs, and to reduce total design time [6], [3], [11], [4],
[12], [8], [7], [1] among others. The introduced approaches
perform their techniques on different partitioning granular-
ities, ranging from fine-grain [6], over medium-grain [3],
[11], to coarse-grain [12], [7] granularities. These auto-
mated hardware/software partitioners use a variety of par-
titioning heuristics: extended greedy-algorithm [6], clus-
tering [2],[9], simulated annealing [3], [7], dynamic pro-
gramming [11] as well as a modified Kernighan/Lin heuris-
tic in [12]. Input programs are partitioned among software
and custom (reconfigurable) hardware parts (processors), as
well as optimized embedded systems are designed.

As part of DICE (Darmstadt Interactive Codesign of
Embedded Systems), the proposedHiPART hierarchical
partitioning approach implements a set of communicating
C and VHDL processes onto a heterogenous target hard-
ware platform, consisting of different types of hardware
modules (Microprocessors, DSPs, FPGAs, ASICs) being
application-dependent connected in an optimized synthe-
sized reconfigurable communication architecture [5], [10].

This library-based communication synthesis step improves
overall system partitioning and design, since the corre-
sponding informations are reflected in the cost function to
be optimized during the partitioning and debugging process.

The introduced hierarchical partitioning method clus-
ters closely related objects (instructions) in order to min-
imize communication and to handle increasing complex-
ity. Such data-dependent clusters are analyzed due to their
hardware and software performance in using pre-computed
hardware and software performance (cost) values of all ob-
jects. The analyzed clusters are partitioned by a coarse-
grained simulated annealing based heuristic. The obtained
hardware/software partition is finally optimized in apply-
ing an extended Fiduccia/Mattheyses algorithm performing
a “fine-tuning” on instruction-level granularity. Thus, the
proposed hierarchical partitioning approach realizes a new
hybrid fine-/coarse-grained partitioning strategy, also incor-
porating optimization with respect to subsequent synthesis
of communication architectures.

Since the user has the option to move clusters from hard-
ware to software and vice versa during the partitioning pro-
cess, this approach offers the possibility to integrate sys-
tem designers and/or application knowledge. Due to the
incremental update technique of the cost function to be op-
timized, alternative partitions are generated rapidly. Thus,
the introduced method (including graphical user interface)
represents a step in direction of realizing fast debugging
tools for hardware/software systems, comparable to soft-
ware debugging. The development of such debugging tools
seems to be necessary, because hardware/software codesign
approaches should also include application information into
the codesign process in order to obtain efficient results.

Initially this paper gives a brief description of the hard-
ware/software partitioning problem. Section 3 presents the
codesign systemDICE briefly and its design flow. In sec-
tion 4 theHiPART partitioning approach is described in de-
tail. Section 5 discusses a computation-intensive applica-
tion example followed by a summary in section 6.

2. Problem Definition

A promising design methodology for real-time embed-
ded systems has to cope with several tasks in order to
achieve an implementation which satisfies the system con-
straints. Mixed hardware/software systems are required if
the targeted system performance can’t be achieved by a
pure software solution. The main design tasks in hard-
ware/software codesign are hardware/software partitioning
and the synthesis of communication structures. For valida-
tion of the functionality of the system at the actual design
state, hardware/software cosimulation is applied at differ-
ent levels of abstraction and rapid prototyping for the final
implementation.

The system level functional partitioning problem can be
defined as follows:

Definition 2.1 partitioning problem

Instance: Given a partitioning graphG = (V;E) con-
sisting of a setV = fv1; v2; : : : vnV g of vertices and
a setE = fe1; e2; : : : enEg, E � V � V of edges
and an edge cost functionc : E ! IR

+. Nodesvi
are functional objects (operations, processes or op-
eration clusters) of a heterogeneous system specifi-
cation. Edgesei represent interrelations of nodes
(control flow dependencies, data dependencies, com-
mon properties and relations of interest). Given a set
U = fU1; U2; : : : UnP g of target units (U1 is a soft-
ware module, all other units are hardware modules),
a setAC = fac2; : : : ; acnP g of unit hardware area
constraints and a setTC = ftc1; : : : ; tcnTCg of tim-
ing constraints.

Configurations: All nP -way partitionings P =
fP1; P2; : : : PnP g with Pi � V , and

SnP
i=1 Pi = V ,

andPi \ Pj = � for i; j 2 f1; : : : ; nP g; i 6= j

Solutions: All partitioningsP = fP0; P1; : : : PnP g such
that allaci 2 AC (with i 2 f2; : : : ; nP g) and alltcj 2
TC (with j 2 f1; : : : ; nTCg) are satisfied

Minimize: c(P) =
PnE

i=1 c(ei)

For performing partitioning constructive and iterative algo-
rithms can be applied. In section 4 we introduce a combined
partitioning method with close interactive designer involve-
ment. The main challenge of hardware/software partition-
ing is to find a trade-off between algorithm runtime and ap-
propriate cost functions. A new feature of theHiPART algo-
rithm is the capability to guarantee to find solutions within
a space bounded by predefined timing constraints.

3. DICE: HW/SW Codesign Environment

The design flow of theDICE system is shown in Fig. 1.
A system specification, consisting of any number of con-
current VHDL and C processes is converted to a concurrent
CDFG (CCDFG).

Cosimulation /
 Profiling

SPARC_IU:
process

variable Re
variable St

begin
-- contro
TempSig :=

Cosimulation /
 Profiling

Communication Synthesis

RAM

u-Contr.
DSP ASIC

VHDL-Entity

P1 Pn

C-Description:VHDL-Description:

1 Architecture
n Processes

Conversion to
CCDFG

Static Analysis

HiPART: Hierarchical semi-interactive Partitioning

Visualization: Data-/Controlflow
Textual Represent.
Cost Monitoring

Designer Int.: Algorithm Control
Manual Partitioning + Debugging

C VHDLCode Migration
and Generation of abstract Comm.

Improved Partitioning

Phys. Comm.-struct.

Improved Partitioning

VHDL Synthesis / C Compilation

- Comm.-structure adapted to requirements
- One or more u-Controllers
- One or more ASICs

C 1

C k

k Processes

VHDL-Entity

P1 P2 Pm

C 1

RAM

C lVHDL Description: C Description

Final System:

Partitioning still ok?

yes

no

Databases
Software Estimation

ESTIMA
Estimation Tools

Hardware and

Figure 1. Design Flow in the DICE Codesign
Environment

Communication in between of processes is done by ab-
stract synchronous and asynchronoussend andreceive
functions. During HW/SW cosimulation, profiling infor-
mation is collected to be used for hardware and software
performance estimations during partitioning. HW/SW par-
titioning is performed on the CCDFG based on a semi-
interactive approach influenced by the designer using the
HiPART graphical user interface. After HW/SW reparti-
tioning code transformations C$ VHDL are performed for
code pieces with modified implementation attributes. Dur-
ing communication synthesis, abstract communication op-
erators are replaced by connections using buses, buses with
shared memory or FIFO buffers. In a subsequent cosim-
ulation step a validation of the resulting functionality and
the compliance with constraints is checked. If some con-

straints are violated, a HW/SW repartitioning with stronger
constraints is necessary. If not, the code can be synthe-
sized/compiled to target architectures as ASICs, FPGAs,
�C or theDICE rapid prototyping platformREPLICA.

4. HW/SW Partitioning

HiPART is a new hierarchical hardware/software parti-
tioning algorithm. An initial system specification, consist-
ing of any number of concurrent C and VHDL processes,
is converted into a CCDFG (concurrent control/dataflow
graph). This graph is visualized by theHiPART graphi-
cal user interface (GUI) CCDFGView, which provides all
functionality for interactive partitioning control. The struc-
ture of theHiPART partitioning environment is depicted in
Fig. 2.

CCDFG

(Concurrent CDFG)

SPARC_IU:
process

variable Re
variable St

begin
-- contro
TempSig :=

Algorithm Ctrl

Cost Monitor

Partitioned

CCDFG

Pre-Clustering

Clustering

Partitioning (S.A.)

HiPART GUI:

Manual
Partitioning

Refinement (F.M.)

Figure 2. HiPART Interactive Partitioning
Methodology

The HW/SW partitioning strategy is to keep as much as
possible in software. Timing constraints may be attached
by the designer using the GUI. The partitioning takes care
of these constraints and hardware processes will be gen-
erated, if this is necessary to satisfy constraints. The ba-
sic partitioning granularity is fixed in a pre-clustering step.
For CCDFGs with a large number of nodes, a reduction of
complexity to a parametrizeable number of nodesnCl is
achieved by clustering. The partitioning of resulting clus-
ters (or CCDFG nodes) is performed by application of sim-
ulated annealing (s.a.). Since clustering reduces the opti-
mization space, the s.a. may not find the absolute global
cost minimum. Therefore additional optimization poten-
tial is explored by a refinement step, where clusters are it-
eratively resolved and post-partitioned using the Fiduccia-

Mattheyses heuristic (still applying constraint observation).
In between of each automatic partitioning step any manual
partitioning may be applied via GUI. An absolute and dif-
ferential cost monitoring of each step gives the designer the
possibility to explore dependencies and to tune/debug the
setting of algorithmic parameters efficiently.

4.1 Pre-Clustering

In the pre-clustering step the granularity of basic par-
titioning entities will be fixed. In classical partitioning
approaches single operations or basic blocks are used as
atomic elements for partitioning. Since operations may dif-
fer significantly with respect to hardware area and execu-
tion performance (e.g. for simple logic operators compared
to full parallel multiplication) a general selection of basic
block granularity will not lead to an optimal initial graph
configuration. Furthermore designer knowledge cannot be
included in systems with fixed granularity. Therefore we
selected aheterogeneous granularity approach. First of all,
an operation or basic block related automatic pre-clustering
is executed. In an additional interactive step, the user may
pre-cluster sets of nodes, which have to be mapped onto
the same partition. Additionally operations, which may be
realized in software only (e.g. pointer operations) will be
pre-clustered automatically into one common partition.

4.2 Clustering

Clustering is applied in order to reduce the complexity
of the subsequent simulated annealing partitioning step in
terms of nodes. The maximum number of nodes is limited
to a user-defined numbernCl of cluster trees. By that the
partitioning time is kept in reasonable limits. If the number
of CDFG nodes is less thannCl, the clustering step has not
to be performed.

The closeness functiond between of two clusters is de-
fined as follows:

d0(vi; vj) = kcomm � dcomm(vi; vj)

+kshare � dshare(vi; vj)(1� dflex(vi; vj))

+kflex � dflex(vi; vj)

+kinitial � dinitial(vi; vj)

kcomm, kshare, kflex andkinitial are user adjustable coef-
ficients.dcomm is the communication closeness, containing
all data dependencies in between ofvi andvj multiplied by
their profiling execution count and bitwidth. In order to en-
able hardware sharing,dshare is a measure for the similarity
of operations contained in both clusters:

dshare(vi; vj) =P
ot2SharedOp size(ot;minfwmax(ot; vi); wmax(ot; vj)g)P

ot2SharedOp size(ot; wmax(ot; vi [vj))

(with denominator zero check) wherewmax(ot; v) is:

wmax(ot; v) = maxfbitwidth(ot; n)jn 2 vg

dflex is a user defined measure for the probability of later
specification changes of the code (no changes expected: 0,
probably changed: 1). Nodes with high flexibility should
be partitioned into software.dinitial is a measure for the
degree of coincidence with the initial specification (HW or
SW).

Algorithm 1 Clustering

initialize all nodesvi of GCl(V;E) by CDFG nodes
initialize edge heap:H = �
for all pairs of nodesvi; vj 2 V do
d(vi; vj) = ComputeCloseness(vi; vj)
if d(vi; vj) > 0 then

insert edgefvi; vjg into heap H
end if

end for
while jV j > nCl andH not emptydo

select fromH edgefvi; vjg with maximumd(vi; vj)
for all vk 2 adj(vi); k 6= i; k 2 f1; : : : jadj(vi)jg do
H := H n fvi; vkg

end for
for all vk 2 adj(vj); k 6= j; k 2 f1; : : : jadj(vj)jg do
H := H n fvj ; vkg

end for
vnew := vi [vj
properties(vnew) = MergeProperties(vi,vj)
V := (V n fvi; vjg) [fvnewg
for all vk 2 (adj(vi) [adj(vj)) n fvi; vj ; vnewg do
d(vnew ; vk) = ComputeClosess(vnew, vk)
if d(vnew ; vk) > 0 then

insert edgefvnew; vkg intoH
end if

end for
end while

The value of the closeness measured0(vi; vj) increases
with the size ofvi andvj . In order to be able to achieve an
equalized cluster size distribution, the closeness is reduced
as follows:

d(vi; vj) =

8<
:

d0(vi;vj)�
jvij+jvj j

N

�attenuation jvij+ jvj j > N

d0(vi; vj) else

with N = threshold � jVCDFGj=nCl. The values of
treshold andattenuation can be parametrized.

The clustering algorithm itself is straightforward (Alg.
1) and follows the strategy to select clusters to be fused by
closeness priority. In each clustering step a cost update to
all clusters adjacent to the fused ones has to be performed.

4.3 Partitioning

The main partitioning step is done by application of sim-
ulated annealing (s.a.). Advantages of s.a. are the ability

to to overcome local minima of the cost function and ro-
bustness with respect to modifications of the cost function.
Given a partitioning graphGP (V;E) (resulting from clus-
tering or manual prepartitioning), a setTC of timing con-
straints and a setAC of hardware area constraints, dur-
ing partitioning a cost functionc(P ; GP (V;E); TC;AC),
which assigns a cost value to each possible partitioning, is
minimized. In difference to definition 2.1 constraints are
included in the cost function. Constraint violations will be
punished by very high cost increase. Benefits of this con-
cept are a unified cost function and the possibility of inter-
mediate entrance into forbidden areas during optimization.
The cost function is defined as follows:

c(P ; GP (V;E); TC;AC) =
PnPX
p=P2

(carea(E; p) + ksharecshare(p))

+
1

jV j

X
v2V nP1

kflexcflex(v)

+
1

jV j

X
v2V

kinitialcinitial(v)

+
X
e2E

kcommccomm(e)

+
X

tc2TC

cconstr(tc)

karea, kshare, kflex, kinitial and kcomm are coefficients
which allow cost function adjustment by the designer. The
area costs ofhardwarepartitions are calculated as

carea(E; p) = kareaarea(E; p) + carea violation(E; p)

with

area(E; p) = area op(p) + area wire(E; p)

carea violation(E; p) =

=

�
0 area(E; p) < ac(p)
e2�(area(E;p)�ac(p)) � 1 else

The areaarea op(p) required for functional operators con-
sists of separated contributions for shared operators (with
rough multiplexer estimation) and non-shared operators.
The wiring area is derived by a constant factor from the
total hardware area. The uniformity ofsharedoperations in
hardware partitionsis targeted by inclusion of the factor

cshare(p) =
ntypes(p)

ntypes

wherentypes is the number of shared operator types in the
whole system specification. This contribution forces that
operation types, which have to be shared due to designer
selection are drawn into the same partition. The flexibility

measure generates costs for preliminary hardware clusters
only and is computed based on the nodesn contained in a
clusterv:

cflex(v) =
1

jvj

X
n2v

flex(n)

Costs for deviation from initial specification type are in-
cluded for clusters implemented in hardware or software:

cinitial(v) =
1

jvj

X
n2v

initial(n)

Communication costs are considered for inter-partition
edgeseext = (vi; vj) by inclusion of:

ccomm(e) =

=

�
0 part(vi) = part(vj)
bitwidth(e) � profiling(e) else

Constraints are included with strong violation punishment
by an exponential function (oc = over-constraining):

cconstr(tc) =

=

�
0 if oc(tc) � d(path(tc)) � tmax(tc)
ekconstr(oc(tc)�d(path(tc))�tmax(tc)) � 1 else

In the real implementation the exponential function is piece-
wise defined for a certain interval and then continued by
a linear function with huge gradient (gradient is continued
constantly from interval edge).

4.4 Refinement

During refinement initial clustering stages may be re-
solved iteratively combined with partitioning using a modi-
fied (complex cost function) Fiduccia-Mattheyses heuristic.
Hereby a further local minimization of the cost function is
achieved.

5. Partitioning Results

The HiPART algorithm has been applied to several ap-
plications: fuzzy controller, combustion engine control and
a compress algorithm. The first two examples could be
partitioned within seconds without clustering, due to a
small number of nodes (<100). The partitioning has also
been applied to C compress algorithm (868 nodes). Tim-
ing constraints have been set on the full execution time.
The partitioning into a mixed HW/SW realization has been
performed successfully within five minutes of CPU time
(SPARC 20).

6. Conclusion

The paper presented a new hierarchical partitioning ap-
proach realizing a new hybrid fine-/coarse-grained parti-
tioning strategy which allows any degree of user interac-
tion. Due to fast incremental updates of the partitioning cost

function values, the proposed method is a step in direction
of debugging tools for hardware/software systems. Accord-
ing to the increasing complexity and heterogeneousness of
applications, system designers and application information
can be incorporated into the overall codesign process. In
many cases this seems to be necessary to obtain efficient
solutions.

DICE represents a hardware/software codesign system
applicable to both: implementing complex applications
onto a heterogeneous target hardware platform (incl. op-
timized synthesized communication architectures), and for
rapid system prototyping of efficient implementation solu-
tions for efficient systems-on-the-chip (SOCs).

References

[1] J. K. Adams and D. E. Thomas. The Design of Mixed Hard-
ware/Software Systems. InProceedings of the Design Au-
tomation Conference, pages 515–520, June 1996.

[2] E. Barros, W. Rosenstiel, and X. Xiong. A Method for
Partitioning UNITY Language in Hardware and Software.
In Proceedings of the European Conference on Design Au-
tomation, pages 220–225, Sept. 1994.

[3] R. Ernst, J. Henkel, and T. Benner. Hardware-Software
Cosynthesis for Microcontrollers. InIEEE Design& Test,
pages 64–75, Dec. 1993.

[4] D. Gajski, F. Vahid, S. Narayan, and J. Gong.Specification
and Design of Embedded Systems. Prentice-Hall, 1994.

[5] M. Gasteier.Cosimulation und Kommunikationssynthese im
Entwurf gemischter Hardware/Software-Systeme. PhD the-
sis, Darmstadt University of Technology.

[6] R. K. Gupta, C. N. Ceolho, and G. De Micheli. Program
Implementation Schemes for Hardware-Software Systems.
IEEE Computer, pages 48–55, Jan. 1994.

[7] R. W. Hartenstein and J. Becker. Two-Level Partitioning of
Image Processing Algorithms for the Parallel Map-oriented
Machine. InProceedings of the 4th Int. Workshop on Hard-
ware/Software Co-Design CODES/CASHE ‘96, Pittsburgh.

[8] J. Hou and W. Wolf. Process Partitioning for Distributed
Embedded Systems. InProceedings of the Int. Workshop
on HW/SW Codesign (CODES/CASHE)), pages 70–76, Mar.
1996.

[9] T. B. Ismail, K. O’Brien, and A. Jerraya. Interactive System-
level Partitioning with PARTIF. InProceedings of the Euro-
pean Design & Test Conference, pages 464–468, Mar. 1994.

[10] A. Kirschbaum and M. Glesner. Rapid Prototyping of Com-
munication Architectures. InIEEE Workshop on Rapid Sys-
tem Prototyping, pages 136–141, Chapel Hill, USA, June
1997.

[11] P. V. Knudsen and J. Madsen. A Dynamic Programming Al-
gorithm for Hardware/Software Partitioning. InProceedings
of the CODES/CASHE ‘96, Pittsburgh, USA.

[12] F. Vahid. Modifying Min-Cut for Hardware and Software
Functional Partitioning. InProceedings of the 5th Int. Work-
shop on Hardware/Software Co-Design CODES/CASHE
‘97, Braunschweig, Germany.

